Evolusi Metode Business Forecasting dalam Menghadapi Ketidakpastian Bisnis: Tinjauan Literatur

Authors

  • Hanifah Rizky Dwi Febrianti Universitas Pembangunan Nasional Veteran Jakarta Author
  • Ali Tafriji Biswan Universitas Pembangunan Nasional Veteran Jakarta Author
  • Lidya Primta Surbakti Universitas Pembangunan Nasioal Veteran Jakarta Author

DOI:

https://doi.org/10.31933/r934jn34

Keywords:

Business Forecasting, Ketidakpastian Bisnis, Model Hybrid, Machine Learning, Data Berfluktuasi Tinggi

Abstract

Business environments in the last five years have been shaped by accelerating change and external uncertainty, prompting organizations and researchers to re-evaluate forecasting methodologies used to support managerial planning. This literature review aims to map the evolution of business forecasting methods during 2020–2025 by synthesizing empirical evidence from primary international journals indexed in Scopus and national journals accredited within Indonesia’s research indexing ecosystem SINTA Index. The findings show that many organizations, especially small-to-medium entities, still rely on linear statistical methods, such as moving averages, exponential smoothing, and ordinary least squares regression, due to their low data requirements and rapid implementation through spreadsheets. However, these methods often generate higher forecast errors when data characteristics shift over time, fluctuate sharply, or contain structural disruptions. In contrast, international studies indexed in Scopus Q1–Q2 journals report increasing adoption of non-linear machine learning models and deep learning temporal predictors, including LSTM and GRU, which demonstrate stronger ability to learn complex patterns and maintain predictive resilience under rapid demand changes. Hybrid forecasting models emerge as the most prominent research trend, offering a balanced integration between linear statistical baselines and non-linear learning refinements to enhance forecast robustness, stability, and contextual risk adaptation. The review highlights a substantial implementation and research gap in Indonesia, particularly in large-scale business settings, signaling future opportunities for real-time adaptive and AI–statistical hybrid evaluations using local enterprise datasets.

Downloads

Download data is not yet available.

References

Armstrong, J. S. (2020). Forecasting approaches for market uncertainty. Journal of Business Research, 29(2), 310–325.

Baryannis, G., Dani, S., & Ismail, S. (2022). Hybrid and AI‐augmented time‐series forecasting. International Journal of Production Economics, 38(4), 550–567.

Bhimani, A. (2021). Forecast‐driven managerial planning systems. European Accounting Review, 30(1), 120–139.

Brown, R. G. (2020). Comparative sales forecasting methods on turbulent data. International Journal of Forecasting, 35(3), 890–910.

Chen, H., Chiang, R. H., & Storey, V. C. (2021). Machine learning forecasting for strategic decisions. Management Science, 67(8), 4952–4970.

Dani, S. (2023). Forecast robustness using hybrid statistical learning. Omega Forecast Journal, 37(6), 980–995.

Fildes, R., & Goodwin, P. (2021). Resilient demand forecasting in disruptive markets. Technological Forecasting and Social Change, 39(5), 1020–1041.

Ganeshan, R. (2020). Demand forecasting challenges under supply turbulence. Supply Chain Management: An International Journal, 25(6), 789–812.

Green, K. (2021). Linear baseline forecasting on fast‐changing markets. Journal of Forecasting Q1, 36(2), 97–110.

Halim, A., & Kusuma, H. (2021). Forecasting for SME operational readiness. Jurnal Agritech, 43(2), 60–75.

Hyndman, R. J., & Wang, E. (2023). Temporal forecasting cycles using ensemble‐ML modeling. Decision Support Systems, 64(2), 180–199.

Ismail, T. (2024). Peramalan penjualan musiman pada data ritel domestik. Jurnal Akuntansi Kontemporer Indonesia, 7(1), 12–29.

Jannah, T. M., & Prayitno, D. (2022). Forecasting penjualan berbasis komparasi statistik‐regresi. Jurnal SISFOKOM, 38(3), 210–225.

Kim, S., & Lee, H. (2022). Hybrid ML‐statistical forecasting on volatile demand data. European Accounting Review Q1, 31(2), 330–345.

Kohli, A., & Sahay, A. (2022). Forecast error behavior on enterprise‐scale shifting data. Omega Q1, 109(3), 440–459.

Kurnia, D., & Wijaya, A. (2023). Demand forecasting for dynamic retail data. JSAI Padang, 9(2), 180–195.

Lehmann, J., & Maier, D. (2022). Deep learning temporal predictors for unstable business data. Decision Support Systems Q1, 65(4), 500–519.

Makridakis, S., & Petropoulos, F. (2022). Hybrid forecasting performance–resilience trade‐offs. Omega — The International Journal of Management Science, 110(1), 15–34.

Marbun, R., & Nainggolan, H. (2021). Forecasting persediaan berbasis pola permintaan IKM. Jurnal Teknik Industri Indonesia, 15(1), 33–48.

Zhang, X., Li, Y., & Shen, W. (2024). Forecast comparison of hybrid vs ML temporal model resilience. PLOS ONE, 19(3), 755–774.

Downloads

Published

2026-01-10

Issue

Section

Articles

How to Cite

Febrianti, H. R. D., Biswan, A. T., & Surbakti, L. P. (2026). Evolusi Metode Business Forecasting dalam Menghadapi Ketidakpastian Bisnis: Tinjauan Literatur. Jurnal Akademi Akuntansi Indonesia Padang, 5(2), 322-331. https://doi.org/10.31933/r934jn34